Approximating convex functions via non-convex oracles under the relative noise model
نویسنده
چکیده
We study succinct representations of a convex univariate function φ over a finite domain. We show how to construct a succinct representation, namely a piecewise-linear function φ̄ approximating φ when given a black box access to an L-approximation oracle φ̃ of φ (the oracle value is always within a multiplicative factor L from the true value). The piecewise linear function φ̄ has few breakpoints (poly-logarithmic in the size of the domain and the function values) and approximates the true function φ up to a (1 + )L multiplicative factor point-wise, for any > 0. This function φ̄ is also convex so it can be used as a replacement for the original function and be plugged in algorithms in a black box fashion. Finally, we give positive and negative results for multivariate convex functions.
منابع مشابه
Approximating Convex Functions By Non-Convex Oracles Under The Relative Noise Model
We study succinct approximation of functions that have noisy oracle access. Namely, construction of a succinct representation of a function, given oracle access to an L-approximation of the function, rather than to the function itself. Specifically, we consider the question of the succinct representation of an approximation of a convex function φ that cannot be accessed directly, but only via o...
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملInformation-theoretic lower bounds for convex optimization with erroneous oracles
We consider the problem of optimizing convex and concave functions with access to an erroneous zeroth-order oracle. In particular, for a given function x → f(x) we consider optimization when one is given access to absolute error oracles that return values in [f(x) − , f(x) + ] or relative error oracles that return value in [(1− )f(x), (1 + )f(x)], for some > 0. We show stark information theoret...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Optimization
دوره 16 شماره
صفحات -
تاریخ انتشار 2015